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Effect of shear flow on the stability of domains in two-dimensional phase-separating
binary fluids

Amalie Frischknecht
Department of Physics, University of California, Santa Barbara, California 93106-4030

~Received 18 July 1997!

We perform a linear stability analysis of extended domains in phase-separating fluids of equal viscosity in
two dimensions. Using the coupled Cahn-Hilliard and Stokes equations, we derive analytically the stability
eigenvalues for long wavelength fluctuations. In the quiescent state we find an unstable varicose mode that
corresponds to an instability towards coarsening. This mode is stabilized when an external shear flow is
imposed on the fluid. The effect of the shear is seen to be qualitatively similar to that found in experiments.
@S1063-651X~97!01512-2#

PACS number~s!: 68.10.2m, 64.75.1g, 47.20.Hw, 47.15.2x
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I. INTRODUCTION

Phase-separating binary fluids form complex patterns
domains at late times after a temperature quench into
unstable state. The morphology of the domains is determ
by factors such as the volume fractions of the two phases
viscosities of the two phases, and any externally app
forces @1,2#. Of particular interest to us is the effect of a
plying an external shear flow to a phase-separating bin
fluid. This question is of technological importance becau
many industrial processes involve binary mixtures in a fl
field. The final material properties depend on the dom
morphology, which can be strongly affected by the flu
flow.

At late times after a temperature quench into the t
phase region of the phase diagram, a phase-separating
consists of domains of the two phases of typical sizeR(t),
which coarsen with time generally as a power lawR(t)}ta

@1,3#. The presence of a shear flow dramatically alters
kinetics of the phase separation. The shear flow deforms
domains, interfering with their growth so that it compet
with the thermodynamic force driving the phase separat
Many theoretical@4–7# and experimental@8–10# studies
have investigated the effect of the shear flow on the gro
of the domains and the exponenta. In this work we focus on
a different aspect of the effect of shear: Eventually the bin
fluid tends towards a dynamic, nonequilibrium steady stat
which the coarsening instability is stopped by the shear fl
@5,11,12#. The morphology in this stationary state is ve
anisotropic@8#. In relatively weak shear, the domains a
somewhat deformed, whereas at higher shear they can
come highly elongated along the flow direction. A ‘‘strin
phase’’ consisting of macroscopically long cylindrical d
mains forms when the two phases are both percola
@13,14#. This is surprising since a long cylinder of fluid a
rest would normally break up via the Rayleigh instabil
@15,16#, a hydrodynamic instability. The string phase appe
to be a fairly robust phenomenon, appearing in both criti
and off-critical polymer mixtures@13# and in critical micellar
solutions@17#. Thus the shear flow both opposes the therm
dynamic instability driving phase separation and stabili
these highly anisotropic domains against hydrodynamic
stabilities.
561063-651X/97/56~6!/6970~11!/$10.00
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Our goal is to understand these stabilizing effects of sh
flow. As a first step towards elucidating these effects,
consider a strictly two-dimensional system. We expect
operative physical mechanisms in the two-dimensional fl
to be somewhat different from those in the three-dimensio
case, but the mathematical techniques and physical insi
developed here will be of use in the future for thre
dimensional calculations. We consider late times after an
tial temperature quench into the unstable region of the ph
diagram, when the system is composed of domains of
two phases close to their equilibrium concentrations a
separated by well-defined interfaces. We will, however,
tain the dynamics of the concentration field in our analys
so that the interfaces between domains have a finite widtj.
We model the fluid using the coupled Cahn-Hilliard a
Navier-Stokes~for creeping flow! equations as described i
Sec. II. This is in contrast to the work of San Miguelet al.
@18#, who did an analysis of the stability of domains in tw
dimensional binary fluids, using only the Navier-Stok
equation and treating the interfaces as mathematically sh

In Sec. III we linearize our equations for the general ca
of a system with any number of flat interfaces and deve
some useful mathematical machinery. In Sec. IV we ap
our methods to the case of a single interface and reprod
some well-known results. In Sec. V we turn to our ma
focus, the stability of a single domain in the form of a str
~in three dimensions, a flat sheet! of one phase, immersed i
an infinite region of the other phase as illustrated in Fig.
We impose a shear flow along thex direction by applying a
constant shear stressP0. In this paper we take the viscosit
of the two phases to be equal, so that the flow field of

FIG. 1. Geometry of a single lamellar domain of phasea.
6970 © 1997 The American Physical Society
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56 6971EFFECT OF SHEAR FLOW ON THE STABILITY OF . . .
unperturbed system is linear. There are two linearly indep
dent perturbations of the lamellar domain along thex axis. In
the ‘‘zigzag’’ mode the two interfaces fluctuate in phas
whereas in the ‘‘varicose’’ or ‘‘peristaltic’’ mode they fluc
tuate out of phase. We find that in the absence of the s
flow the zigzag mode is stable, whereas the varicose mod
unstable to long-wavelength perturbations. We use a tig
binding approximation to include the effect of the shear flo
In Sec. VI we observe that the shear flow mixes the t
modes so that above a critical shear rateġc the lamellar
domain is stable. We conclude with some discussion in S
VII.

II. MODEL EQUATIONS

We consider a simple binary fluid with one scalar ord
parameterF, the difference in concentration between t
two components. We use the usual Ginzburg-Landau fo
for the coarse-grained free energy of a symmetrical mixt

F@F#5E dr S 1

2
K~“F!22

1

2
r 0F21

1

4
gF4D , ~2.1!

wherer 0 andg are positive constants so that we are bel
the coexistence curve in the two-phase region. Minimiz
the homogeneous part ofF leads to the values of the con
centration in the two bulk phases at equilibrium:

F56Ar 0

g
[6fe .

The equation of motion forF is the Cahn-Hilliard equation
with a convective coupling ofF to the velocity fieldu:

]F

]t
52u•“F1M¹2

dF

dF
. ~2.2!

Here M is a concentration-independent mobility. Since w
are interested in the late stages of phase separation, w
glect all thermal fluctuations. The equation for the velocity
the Navier-Stokes equation for an incompressible fluid, g
eralized to include the coupling of the order parameter to
velocity field @19#:

r
]u

]t
1r~u•“ !u5h¹2u1“F

dF

dF
2“P. ~2.3!

In this paper the viscosityh will be taken to be independen
of F; hence there is a single viscosity for the fluid indepe
dent of the concentration pattern. The pressureP is deter-
mined by the incompressibility condition

“•u50 . ~2.4!

We will consider only low Reynold’s number flow so th
convective term (u•“)u in the Navier-Stokes equation ca
be ignored. We will also assume that the fluid is sufficien
viscous that the velocity responds instantaneously to s
changes inF; we can then neglect the inertial term]u/]t
and the resulting equations describe ‘‘creeping’’ or Stok
flow. The term coupling the concentration to the veloc
field in Eq. ~2.3! leads to a capillary force at interface
n-
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where gradients inF induce fluid flow. Equations~2.2!–
~2.4! are the same as those of ‘‘model H’’~without the ther-
mal noise terms! used to study critical binary fluids@20#.
These equations have been used extensively to study p
separation in binary fluids@3#.

The first step in a stability analysis is to derive the stea
state solutions to the equations of motion. With the geome
of Fig. 1 in mind, we assume thatF andu are functions ofy
only and look for time-independent solutions. The Cah
Hilliard equation~2.2! has steady-state solutions satisfying

dF

dF
52K¹2F2r 0F1gF35m5const, ~2.5!

wherem is the exchange chemical potential. Near a sin
interface, we can takem50 and the concentration has th
usual ‘‘kink’’ solution

Fs5Ar 0

g
tanhA r 0

2K
y5fetanhy/j, ~2.6!

where the width of the interface between the two coexist
phases is the thermal correlation lengthj5A2K/r 0. For a
system of many lamellar domains, Eq.~2.6! gives the con-
centration profile at each interface when the domain siz
much larger thanj. We note that there is a surface tensi
associated with the presence of an interface, which is just
excess free energy per unit area at the interface@21#:

s5KE
2`

`

dyS dFs

dy D 2

5
2A2K1/2r 0

3/2

3g
5

2jr 0
2

3g
. ~2.7!

In the stationary state in shear flow there is no velocity in
y direction. We impose a constant shear stressP0 so the
stationary velocity satisfies

us5ġyx̂, ~2.8!

where

ġ[
P0

h

is the shear rate.
It is convenient to rewrite our equations in dimensionle

form by scaling lengths by the correlation length, the co
centration by its equilibrium magnitude in the bulk phas
and time by the natural diffusion time involving the mobilit
M in the Cahn-Hilliard equation. The velocity is scaled b
the correlation length over the diffusion time:

r̄ 5rA r 0

2K
5

r

j
,

t̄ 5t
Mr 0

2

K
5t

2Mr 0

j2
,

F̄5
F

Fe
,
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6972 56AMALIE FRISCHKNECHT
ū5u
K

Mr 0
2j

5u
j

2Mr 0
,

P̄5P
j2

2Kfe
2

.

Note that the new dimensionless correlation length isj̄ 51.
In dimensionless form the equations of motion are now

]F̄

] t̄
52 ū•“̄F̄1

1

2
¹̄2S 2

1

2
¹̄2F̄2F̄1F̄3D , ~2.9!

05¹̄2ū1
1

h̄
“̄F̄S 2

1

2
¹̄2F̄2F̄1F̄3D2

1

h̄
“̄P̄, ~2.10!

05¹̄• ū. ~2.11!

We see that the system is characterized by the dimension
parameterh̄ :

h̄5
Mgh

K
5

4Mr 0h

3sj
. ~2.12!

In dimensionless form, the concentration and velocity p
files derived above for a single interface parallel to the fl
are

F̄s~ ȳ !5tanhȳ , ~2.13!

ūs~ ȳ !5 ḡ̇ ȳ x̂. ~2.14!

The dimensionless shear rateḡ̇ 5ġtdiff is simply the product
of the shear rate and the diffusion timetdiff5j2/Mr 0 and
thus represents a second dimensionless parameter that
acterizes the strength of the shear flow.

III. STABILITY ANALYSIS

In this section we will develop an overall strategy to e
amine the stability of any number of lamellar domains. W
perform a linear stability analysis about the stationary sta
derived above. We begin by considering small perturbati
about the stationary solutions~we will drop the bars over the
dimensionless variables in the rest of the discussion, ex
on the parameterh̄ for clarity!

f5F2fs , ~3.1!

v5u2us . ~3.2!

To linear order in the perturbationsf andv the equations of
motion become

]f

]t
52vy

]fs

]y
2us

]f

]x
1

1

2
¹2S 2

1

2
¹21Ws~y! Df,

~3.3!

05¹2v1
1

h̄

]fs

]y S 2
1

2
¹21Ws~y! Df ŷ2“P, ~3.4!
ss

-

ar-

s
s

pt

05“•v. ~3.5!

HereWs is a function of the stationary concentration profil

Ws~y!5
]2f

]f2U
fs~y!

52113fs
2~y!. ~3.6!

For a single interface aty50, Ws(y)5223 sech2y, so that
the nonconstant part ofWs is isolated near the interface.

In this work we are interested in perturbations along
flow direction that are perpendicular to the planar interfac
Any such perturbation can be written as a sum over Fou
components along thex direction, so we take our perturba
tions to have the plane-wave forms

f5f~y!eikx2vt, v5v~y!eikx2vt. ~3.7!

We will consider long-wavelength fluctuations for whic
kj!1. Note that in the following we takek to be positive, so
that k represents the magnitude of the wave vector. First
consider the hydrodynamic equations. If we substitute
expression forv given in Eq. ~3.7! into the equations of
motion ~3.4! and ~3.5! for v we find that we can solve them
exactly in terms of a Green’s function. First we introduce t
stream functionC, defined by

vx5
]C

]y
, vy52

]C

]x
. ~3.8!

The incompressibility condition~3.5! is then automatically
satisfied byC. The two components of the Navier-Stoke
equation~3.4! can be used to eliminate the pressureP, leav-
ing a fourth-order ordinary differential equation fo
C5c(y)exp(ikx2vt):

c~ iv !22k2c91k4c5
ik

h̄
fs8S 1

2
k2f2

1

2
f91Ws~y!f D .

~3.9!

Here primes indicate differentiation with respect toy. The
boundary conditions are thatc and its derivative vanish a
infinity. This equation can be formally solved using
Green’s function to obtain they component ofv that is
needed in the concentration equation~3.3!:

vy~y!52 ikc~y!

5
1

4h̄k
E

2`

`

dy8~11kuy2y8u!e2kuy2y8ufs8~y8!

3S 1

2
k2f~y8!2

1

2
f9~y8!1Ws~y8!f~y8! D .

~3.10!

This givesvy in terms of an integral overf.
Next substituting Eq.~3.7! into the concentration equatio

~3.3! results in an eigenvalue equation forv(k),
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v~k!f5vy

dfs

dy
1 ikġyf2

1

2 S d2

dy2
2k2D

3S 2
1

2

d2

dy2
1

1

2
k21Ws~y!D f, ~3.11!

where we have usedus5ġy. A real, positive value ofv(k)
indicates stability~damping! of the perturbation. Note tha
this is essentially an integro-differential equation in whichvy
acts as an integral operator onf.

We cannot solve Eq.~3.11! exactly so an approximat
method is needed. To develop our calculational approach
first consider Eq.~3.11! without the flow terms:

vf52
1

2S d2

dy2
2k2D S 2

1

2

d2

dy2
1

1

2
k21Ws~y!D f.

~3.12!

This equation is applicable to the perturbations of domain
a binary solid and was used by Langer@22# to describe coars
ening mechanisms in binary alloys. Note that Eq.~3.12! has
the form

vf5GFf, ~3.13!

where we have defined the operators

G52
1

2S d2

dy2
2k2D , ~3.14a!

F52
1

2

d2

dy2
1

1

2
k21Ws~y!. ~3.14b!

If fn is the set of eigenfunctions of Eq.~3.13! and we define
a set of ‘‘conjugate’’ functions by

Gf̃n5fn , ~3.15!

then one can show thatG and F are Hermitian operators
~although their product is not! as long as thefn andf̃n obey
periodic boundary conditions or vanish at infinity. We no
that the eigenvaluesvn are real and the eigenfunctions an
their conjugates are orthogonal:

~f̃m ,fn![E
2`

`

f̃m* ~y!fn~y!dy50 for nÞm.

Then for any pair of trial functionsf0 and f̃0 obeying the
same boundary conditions, we can find an upper bound
the lowest eigenvaluev from a variational relation@22,23#

vmin<
~f0 ,Ff0!

~f̃0 ,f0!
. ~3.16!

Here the parentheses again indicate inner products.
To apply Eq.~3.16! we need a good trial functionf0. It is

easy to determine an exact solution of Eq.~3.12! in the par-
ticular case when we have a single flat interface present
when f is a function ofy only (k50). We note that the
e

in

n

nd

system is translationally invariant, so that any solution t
corresponds to a translation of the interface by some amo
dy is also a solution. Thus ify→y1dy we can write

fs~y1dy!5fs1
dfs

dy
dy1•••,

so it must be that

f05
dfs

dy
5sech2y ~3.17!

is also a solution. It is easy to verify that this is the case, w
corresponding eigenvaluev50. This is the lowest-lying ei-
genvalue of Eq.~3.12! for a system with a single plana
interface andk50 @23#. We can use the variational principl
~3.16! to calculate the stability eigenvalues near thisv50
translational mode for more general situations by assumin
trial function formed by appropriate linear combinations
the single interface solution@24#. To use Eq.~3.16! we also
need to determine the conjugate functionf̃0. By definition
the conjugate function satisfies

Gf̃052
1

2S d2

dy2
2k2D f̃0~y!5f0~y!. ~3.18!

We can easily solve forf̃0 by using a Green’s function, with
boundary conditions thatf̃0 and f̃08 vanish at infinity. We
find

f̃0~y!5E
2`

`

dy8
1

k
e2kuy2y8uf0~y8!. ~3.19!

The conjugate function is thus obtained by substituting
desired trial functionf0 into Eq. ~3.19!.

To summarize the results of this section, we have line
ized the equations of motion, expressed them parametric
in terms of the wave numberk, and solved the hydrodynami
equations forvy as an integral overf. The eigenvalue equa
tion ~3.11! can be solved approximately in the absence of
two flow terms @i.e., Eq. ~3.12!# by evaluating Eq.~3.16!
using an appropriate trial function. The methods used to
clude the flow terms will be explained in the following se
tions.

IV. DISPERSION RELATION FOR A SINGLE INTERFACE

As an example of the variational technique, consider
dispersion relation of a single flat interface separating se
infinite domains of the two phases. We initially neglect h
drodynamic effects and focus on solving Eq.~3.12! for v(k).
For a single interface located aty50 our trial solution is
exactly f05fs85sech2y. There is only one term inFf0

sincef0 is a solution to Eq.~3.12! for k50:

Ff05S 2
1

2

d2

dy2
1

1

2
k21223 sech2yD ~sech2y!

5
1

2
k2sech2y.
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Using Eq.~3.19! for the conjugate functionf̃0, we find

f̃0~y!5E
2`

`

dy8
1

k
exp~2kuy2y8u!sech2y8

5E
2`

`

dy8S 1

k
2Uy2y8U1••• D sech2y8

5
2

k
22ln coshy1O~k!,

where we have expanded the exponential for smallk ~long
wavelengths!. This expansion is not uniform iny, but is jus-
tified since the integrand is only nonzero for smally8 and
because we will only needf̃0 for small values ofy in the
subsequent analysis. The normalization integral is simply

~f̃0 ,f0!5E
2`

`

dyS 2

k
22ln coshy1O~k! D sech2y

5
4

k
22~222ln2!1O~k!.

Next we apply the variational theorem~3.16! to obtain

v<
~f0 ,Ff0!

~f̃0 ,f0!
5

2k2/3

4/k22~222ln2!1O~k!
>

1

6
k31O~k4!,

~4.1!

where we have retained only the lowest-order term ink. If
we rewrite this relation in dimensional units, we find

v>
1

3
Dk3j1O~k4! ~4.2!

whereD5Mr 0 is a diffusion constant. This result has be
obtained previously by Jasnow and Zia@23# and by Shi-
nozaki and Oono@25#. It also agrees to lowest order ink with
the perturbative calculation by Bettinson and Rowlands@26#.
The eigenvalue is positive so the single interface is stable
least to long-wavelength perturbations.

The physics here is straightforward. We know that outs
a curved interface there is a slight excess concentrat
which is given by the Gibbs-Thomson relation@21#

df5
sx

RDf
, ~4.3!

wheres is the surface tension,x is the susceptibility,R is
the radius of curvature of the interface, andDf52fe is the
miscibility gap. In our case the curvature of the interface
1/R5Ak2, whereA is the amplitude of the small perturba
tion. The susceptibilityx is x215]m/]f5r 0 in the bulk
phase. The excess concentration due to the curvature is t
fore

df;
Ak2s

fer 0
;Ak2jfe ,

where we have used Eq.~2.7! to eliminates. This excess
concentration will occur outside regions of positive curvatu
at

e
n,

s

re-

e

and there will be a corresponding lack of concentration
regions of negative curvature, creating a concentration g
dient along thex axis. The flux across the interface caus
by this gradient is roughlyvDf, wherev is the velocity of
the interface. That velocity in turn is just the rate of chan
of the amplitudeA of the perturbation, so

vDf5fe

dA

dt
5fevA;Du“uf.

The concentration gradient isu“fu;kdf; putting every-
thing together, we find

fevA;DAk3jfe ,

so thatv;Dk3j as advertised.
We can include the lowest-order hydrodynamic effects

the dispersion relation by performing a perturbative calcu
tion to first order ink. We write the full eigenvalue equatio
~3.11! in the form

GFf1Vf5vf, ~4.4!

where the ‘‘unperturbed’’ problem is simply Eq.~3.12!:

GFf052
1

2 S d2

dy2
2k2D S 2

1

2

d2

dy2
1

1

2
k21Ws~y!D f0

5v0f0 ,

with v0>k3/6 and f0>sech2y from the variational result
~note these solutions are exact fork50). The perturbationV
contains the flow terms

V5vy

dfs

dy
1 ikġyf.

We expectvy to be proportional to a power ofk ~since for
k50 there should be no induced velocity in they direction!,
so V itself is proportional to a power ofk and is therefore
small for long wavelengths. Expandingv and f in powers
of k and multiplying Eq.~4.4! on the left by the correspond
ing left eigenvectorf̃, one can show in the usual way th
the lowest-order correction tov in perturbation theory is

v15
~f̃0,Vf0!

~f̃0,f0!
. ~4.5!

We solve for the velocity field by substitutingf0 into Eq.
~3.10!:

vy5
1

4h̄k
E

2`

`

dy8~11kuy2y8u!e2kuy2y8u

3sech2y8S 1

2
k2sech2y8D

5
k

8h̄
E

2`

`

dy8@sech4y81O~k2!#5
k

6h̄
1O~k2!,

~4.6!
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where we have again expanded the exponential for smak.
We find that to lowest ordervy is linear ink, so that overall
V}k. Since our first-order perturbative result will only b
good toO(k), we only need the exact part of the result to t
unperturbed problem@recall that the variational result i
O(k3)], for which v050. In the reference frame in whic
us(y)5ġy, the integral over the convective termikġyf in
Eq. ~4.5! vanishes, so that we obtain a single term in the fir
order correction tov from thevy term:

v5v01
~f̃0,vyfs8!

~f̃0,f0!
501

„f̃0,@k/6h̄1O~k2!#f0…

~f̃0,f0!

5
k

6h̄
1O~k2! ~4.7!

since fs85sech2y5f0 for a single interface. If we restor
the units in this result we obtain

v5
sk

4h
1O~k2!, ~4.8!

wheres is the surface tension. This is a well-known res
for the damping of long-wavelength capillary waves on
planar interface between two liquids, in the limit that t
viscosity is sufficiently large that inertial effects can be n
glected@27#.

V. CALCULATIONAL METHOD FOR A LAMELLAR
DOMAIN

We now turn to the stability of a lamellar domain of on
phase immersed in the other phase, so that we have
interfaces in the system as in Fig. 1. When the spacinl
between the two interfaces is at least a few correlat
lengths ~note that we continue to work with scaled va
ables!, l@1, the stationary concentration profile is

fs5H tanh~y1l/2!, 2`,y,0

2tanh~y2l/2!, 0,y,1`,
~5.1!

where we have arbitrarily taken thea phase with equilibrium
concentrationfa511 to be in the middle, with layer thick
nessl. In this expression we have set the exchange chem
potentialm to zero. More accurately, we can calculatem as
follows. The stationary solution that satisfies Eq.~2.5! is

fs5tanh~y1l/2!2tanh~y2l/2!1m,

where the regions indicated in Eq.~5.1! are implied. The
chemical potential serves as a Lagrange multiplier to k
the concentration conserved, so we can findm by integrating
the concentration field over the size of the system and se
it equal to the average concentrationfav :

1

2LE2L

L

fs~y!dy5fav .

We want the volume fractionxb of the background phas
with concentrationfb521 to bexb5(2L2l)/2L. Using
the lever rule
t-

t

-

o

n

al

p

g

xb5
fa2fav

fa2fb

and the equilibrium concentrationsfa51 andfb521, we
find that

fav5211
l

L
.

Doing the integral over the stationary concentration a
keeping only the first-order corrections in exp(2l) for l@1,
we find that

m>2
1

L
e2l, ~5.2!

so thatm→0 as the system sizeL→`. The dependence ofm
on l will be important to our understanding of the physics
Sec. VI A below.

Next we want to solve the full eigenvalue equation~3.11!
for the lamellar domain. Any perturbation of the domain c
be written in terms of two linearly independent perturbati
modes: Either the two interfaces can fluctuate in phase w
each other to form a ‘‘zigzag’’ mode or they can fluctua
out of phase in a ‘‘varicose’’ or ‘‘peristaltic’’ mode. Thes
modes are pictured in Figs. 2 and 3. Since we are intere
in calculating the eigenvalues near the marginally sta
mode withv50 at k50, we take the perturbed concentr
tion field for the zigzag and varicose modes to be, resp
tively,

fz5
1

2
sech2~y1l/2!2

1

2
sech2~y2l/2!, ~5.3!

fv5
1

2
sech2~y1l/2!1

1

2
sech2~y2l/2!. ~5.4!

The variational theorem~3.16! gives the eigenvalues fo
these two modes in the absence of any hydrodynamic effe
However, we are interested in the effect of the shear flow
of the fluid flow induced by gradients in the concentratio
We cannot use the perturbation theory approach used in
IV because the varicose mode is not a solution to any ‘‘u
perturbed’’ operator in Eq.~3.11! @note that the zigzag mod

FIG. 2. Zigzag mode.

FIG. 3. Varicose mode.
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is the translation modefz5fs8 and is an exact solution to
Eq. ~3.12! at k50#. Instead, we adopt a ‘‘tight-binding’
approximation that will allow us to solve the full problem

To implement this approach, we consider the two pert
bation modes above to be two basis states and rewrite
eigenvalue equation~3.11! as a 232 matrix equation in this
basis. We usef as the right-hand basis state and the con
gate functionf̃ as the left-hand state. We insert our two tr
functions~5.3! and~5.4! for f into the eigenvalue equation
ld
g
n

-

n
a

.
ns
rd

le

s

r-
he

-
l

multiply on the left by the correspondingf̃, and integrate
over all y. In vector notation, we have

f05S a@sech2~y1l/2!2sech2~y2l/2!#/2

b@sech2~y1l/2!1sech2~y2l/2!#/2
D 5S afz

bfv
D
~5.5!

as our trial function, wherea andb are the amplitudes of the
two modes. Substituting into Eq.~3.11! gives the matrix
equation
S ~f̃z,fz!v 0

0 ~f̃v,fv!v
D S a

bD 5S ~f̃z ,vy
zfs8!1~f̃z ,ikġyfz!1~fz ,Ffz! ~f̃z ,vy

vfs8!1~f̃z ,ikġyfv!

~ f̃v ,vy
zfs8!1~f̃v ,ikġyfz! ~f̃v ,vy

vfs8!1~f̃v ,ikġyfv!1~fv ,Ffv!
D

3S a

bD . ~5.6!
ove

to

n,
q.

c-
Here we have used the definitionGf̃5f. The superscript on
vy indicates to which perturbation mode the velocity fie
corresponds, so thatvy

z is the velocity induced by the zigza
mode andvy

v the velocity induced by the varicose mode. O
the left-hand side of Eq.~5.6! we use the orthogonality prop
erties

~f̃z ,fv!5~f̃v ,fz!50.

These also apply to the diffusive terms on the right-ha
side; this procedure thus ensures that in the absence of
flow effects we obtain the same eigenvaluesv as we would
from the variational theorem~3.16!. We can now solve Eq
~5.6! for the stability eigenvalues. Note that all calculatio
presented below are carried out to the lowest possible o
in k.

VI. LAMELLAR DOMAIN RESULTS

A. Without shear flow

We consider first the solution of Eq.~5.6! in the absence
of the external shear flow (ġ50). The only possible off-
diagonal terms are the ones involvingvy . We begin by cal-
culating the necessary integrals that form the matrix e
ments.

Using Eq.~3.19! and expanding for smallk as in Sec. IV,
we find that the conjugate function for the zigzag mode i

f̃z~y!52 ln cosh~y1l/2!1 ln cosh~y2l/2!

1kly1O~k2!.

The normalization integral is then
d
ny

er

-

~f̃z ,fz!5E
2`

`

dy$@2 ln cosh~y1l/2!1 ln cosh~y2l/2!

1kly1O~k2!#@sech2~y1l/2!

1sech2~y2l/2!#/2%

52l222kl21O~k2!. ~6.1!

Note that the second term on the right-hand side of the ab
is negligible for sufficiently largel, but not whenl is of the
order of a few correlation lengths. Since it is reasonable
consider the case ofl being a few timesj ~recallj51), we
consider exp(2l) to be a small parameter in the calculatio
but not 1/l, so that we retain terms like the additive 2 in E
~6.1!. Next, substitutingfz into Eq. ~3.10! for the velocity
field, we find by expanding for smallk as before that

vy
z~y!5

k

6h̄
2

k3

48h̄
S 4y21l21

p2

3
22D1O~k4!.

~6.2!

Finally, sincefz5fs8 , there is only one term inFfz :

Ffz5
1

4
k2@sech2~y1l/2!2sech2~y2l/2!#. ~6.3!

Now we turn to the varicose mode. The conjugate fun
tion for this mode, expanded for smallk, is

f̃v~y!5
2

k
2 ln cosh~y1l/2!2 ln cosh~y2l/2!

1kS y21
l2

4
1

p2

12D1O~k2!.

This leads to a normalization integral of
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~f̃v ,fv!5
4

k
22l2214 ln 21kS l21

p2

3 D1O~k2!.

We note that the normalization goes to infinity ask→0. This
is the mathematical manifestation of the fact that the varic
mode is not allowed atk50 because it does not conser
mass. For any nonzerok however there is no problem. Th
velocity field for the varicose mode is given by

vy
v~y!5

4k

h̄
~2l23!e22ly2

k3l

12h̄
y1O~k2e22l,k4!.

~6.4!

In this expression we have not included terms ofO(k2e22l).
These terms will be negligible compared to terms ofO(k3)
for k.e22l ~at such smallk, of course, the linear term ink
pe
e

will dominate over anyk2 terms!. We will see below that this
condition is met for thek values of most interest. Finally, fo
the varicose mode

Ffv5
1

4
k2@sech2~y1l/2!1sech2~y2l/2!#

23 sech2~y1l/2!sech2~y2l/2!, ~6.5!

so thatFfv includes an overlap term between the two inte
faces.

It is fairly simple to show by straightforward integratio
that the off-diagonal terms in Eq.~5.6! vanish~for ġ50):

~f̃z ,vy
vfs8!5~f̃v ,vy

zfs8!50.

This reduces the matrix equation to
S ~f̃z,fz!v 0

0 ~f̃v,fv!v
D S a

bD 5S ~f̃z,vy
zfs8!1~fz ,Ffz! 0

0 ~f̃v,vy
vfs8!1~fv ,Ffv!

D S a

bD ~6.6!
ra-

e
i-

tted

en-
so that we can solve for each eigenvalue separately:

v5
~f̃,vyfs8!1~f,Ff!

~f̃,f!
~6.7!

for each mode. Using the expressions given above we
form the remaining integrals to obtainv for each mode.

For the zigzag mode we find

vz>
k

3h̄
1

k2

6~l21! S 11
kl2

2l22D
2

k3

12h̄
S l21

p2

6
211 f ~l! D1O~k4!, ~6.8!

where f (l) is the function

f ~l!5
d2~l!2ld1~l!2d0

l21
.

Hered0 is the definite integral

d05E
2`

`

dy y2sech2y ln coshy51.706 81

and the functionsd1 andd2 are the overlap integrals

d1~l!5E
2`

`

dy y sech2y ln cosh~y2l!,

d2~l!5E
2`

`

dyy2sech2y ln cosh~y2l!.

These are integrated numerically usingMATHEMATICA . We
see from Eq.~6.8! that the zigzag mode is stable for smallk.
r-

The terms involving the dimensionless viscosityh̄ are due to
the flow field induced by the perturbations in the concent
tion f and come from thevy term in Eq.~3.11!. Depending
on the value ofh̄ , either the hydrodynamic terms or th
diffusive terms will dominate. We find that the stability e
genvalue for the varicose mode is

vv>28ke22l2
12kle22l

h̄
S 2

3
l21D1

k3

12
1

k3l2

6h̄

1O~k2e22l,k4!. ~6.9!

The varicose mode is thusunstable for sufficiently small
wavelengths. The eigenvalues for the two modes are plo
as functions ofk in Fig. 4. Here we takel56, so thate22l

is small~as we assumed above! andk.e22l for most of the
range in the graph, as discussed above. We take the dim

FIG. 4. Dispersion relation forġ50, with l56 andh̄50.1.
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sionless viscosity to beh̄50.1, which is a typical value for
near-critical binary fluids. However, the overall shape of
dispersion relations remains similar for other values ofl and
h̄ .

The instability of the varicose mode may seem unint
tive. We first note that it is unstable only for sufficient
small k and is stabilized at larger wave numbers by thek3

curvature term, the same term that was obtained in Eq.~4.2!
for a system with a single interface. Second, the instabilit
exponentially small in the separation between the interfa
l. This is thus a very weak instability. It is due to a coa
ening effect~essentially Ostwald ripening! in which thin re-
gions of the middle phase shrink in favor of fatter region
Recall that the chemical potentialm;e2l. If l decreases in
a region,m increases, so the chemical potential is higher
the neck regions than in the bulges. This drives a flux fr
the necks towards the bulges~see Fig. 5!. We can understand
the lowest-order diffusive effect as follows. First note th
the lowest-order diffusion term in Eq.~6.9!, with units, is

v;216D
k

j
e22l/j.

As before, we can express the velocity of the interfacevA as

vAfe;Du¹fu;Dkdf

since the concentration gradient is along thex direction. The
excess concentration added~subtracted! in the bulk regions
of the necks~bulges! is essentially

df;
Afe

j
sech2y/j;

Afe

j
e22l/j,

so that

v;2D
k

j
e22l/j.

This implies that a large sheet of one phase immersed in
other will break up into cylinders via this instability. Not
that this isnot the Rayleigh instability of a long fluid cylin-
der, in which the cylinder is unstable towards long wav
length, axisymmetric fluctuations. That is a hydrodynam
instability that occurs for a three-dimensional cylindrical i
terface because the curvature at the necks is higher tha
the bulges. In this two-dimensional perturbation mode,
curvature at the necks and bulges is of the same magni
~the extra dimension out of the plane of say Fig. 5 does
exist! and so there is no curvature-driven instability. T
curvature effect is stabilizing, and it is the thermodynam
force driving phase separation that causes the instability

FIG. 5. Diffusional instability of the varicose mode.
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B. With shear flow

Next we consider what happens when we include the
ternal shear flow. Physically, the shear flow tends to mix
two modes since the top interface travels in an opposite
rection to the bottom interface. We might then expect tha
some shear rate, the two perturbation modes lose their
tinguishing features.

To calculate the eigenvalues we only need to calculate
matrix elements involving the shear. It is straightforward
show that the operatorikġy is off diagonal in the basis o
our two perturbation modes, i.e.,

~f̃z ,ikġyfz!5~f̃v ,ikġyfv!50.

These two off-diagonal elements are found to be

~f̃z ,ikġyfv!5 ikġ~l2l21d1!1 ik2ġlS l2

2
1

p2

6 D
1O~k3!, ~6.10!

~f̃v ,ikġyfz!522i ġl1 ikġ~l22l ln22d11l2!

2 ik2ġS l3

2
1

p2l

3 D1O~k3!. ~6.11!

The stability eigenvalues are now found by diagonalizing E
~5.6!, which means solving the secular equation

U vz2v ~f̃z ,ikġyfv!/~f̃z ,fz!

~ f̃v ,ikġyfz!/~f̃v ,fv! vv2v
U50.

~6.12!

Solving for v gives

v6~k!5
1

2
@vz~k!1vv~k!#

6
1

2
A@vz~k!2vv~k!#22ġ2s~k!, ~6.13!

wheres(k) is given by

s~k!5
k2l~l22l2d1!

l21
1

k3

2~l21!F S d11
l3

l21D
3~l22l2d1!2l42

p3

3
l2G1O~k4!. ~6.14!

Some examples of the two curves Re@v6(k)# are shown in
Fig. 6. The spacing between the two interfaces isl56 and
we have takenh̄50.1. For ġ50 it is clear that Eq.~6.13!
reduces to our previous results, withv15vz andv25vv .
Figure 6 showsv2 for three different shear rates~it turns out
that the curves forv1 for these same shear rates are nea
indistinguishable, so they are plotted as one curve in Fig.!.
We see that at low shear rates the unstable mode still ex
but the window of wave numbers over which Re(v2),0
becomes smaller asġ increases. Above some critical she
rateġc , the previously unstable mode becomes stable for
k. The shear flow thus completely stabilizes the varico
mode, by mixing it with the stable zigzag mode.

We can easily solve for the critical shear rateġc . First
note that the first term in Eq.~6.13! is positive because the
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negative terms invv are exponentially small inl. As ġ is
increased, the square root term in Eq.~6.13! becomes
smaller. The effect is that the value ofk below whichv2,0
becomes smaller with increasing shear; the domain is o
unstable to increasingly longer-wavelength perturbations
the shear rate is increased. For a given shear rate,v2.0 for
all k.kc wherekc satisfiesv2(kc)50:

vz~kc!1vv~kc!5A@vz~kc!2vv~kc!#
22ġ2s~kc!.

~6.15!

The unstable mode becomes stable for all wave numbek
whenkc→0. To find the critical shear rate, we first solve E
~6.15! for ġ(kc):

ġ2~kc!5
24vz~kc!vv~kc!

s~kc!
. ~6.16!

Taking the limitkc→0 in Eq. ~6.16! gives the critical shea
rate for complete stabilization:

ġc
25

4~l21!e22l@8h̄14l~2l23!#

3h̄2l@l22l1d1~l!#
. ~6.17!

For the specific valuesl56 and h̄50.1, one finds
ġc50.072 25, as indicated in Fig. 6.

The critical shear rate is graphed as a function ofh̄ andl

in Figs. 7 and 8. We note the lamella is stable for allġ.ġc .
We see thatġc is an algebraically decreasing function ofh̄
and an exponentially decreasing function ofl. Recall that
h̄}h, so that Eq.~6.17! tells us that as the viscosity in
creases, the easier it is for the shear flow to mix the t
modes before the unstable perturbation has a chance to g
We can also invert Eq.~6.17! to obtain the critical widthlc

above which the lamella is stable for a given shear rateġ. As
we see from Fig. 8, given a shear rateġ, at values ofl lying
below the curve the lamella is unstable to the varicose co
ening mode whereas for values ofl above the curve the
lamella is stable and will no longer coarsen. This sim
system of a single lamellar domain thus exhibits the w

FIG. 6. Dispersion relations:v1 for ġ50.04 ~solid line! and

100v2 for ġ50.04 ~dashed line!, ġ5ġc50.07225~dotted line!,

and ġ50.1 ~dash-dotted line!.
ly
s
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known experimental observation that the shear flow tend
halt the phase separation process.

VII. DISCUSSION

We have seen that in the case of an isolated lame
domain, shear flow has the effect of mixing the zigzag a
varicose modes so that they both become stable. Essent
the flow eliminates the special phase relationship betw
the two interfaces necessary for the varicose mode to e
The physics of this mode is that thin regions evaporate
favor of thick regions, but in the presence of shear thin a
thick regions do not exist long enough for this diffusion
take place since the fluctuations are being carried do
stream.

We would expect that a similar mechanism would app
to a large stack~along they direction! of lamellar domains.
Although the stability eigenvalues have not been calcula
for this case, the effects seen in the single lamellar dom
should apply. Coarsening in they direction in a stack of
lamellae is also dependent on thinner regions evaporat
their atoms diffusing across the intervening phase to
thicker region. From@22# we expect this coarsening instabi
ity to also have a rate that is exponentially small inl. When
one considers sinusoidal perturbations of the layers in a s

FIG. 7. Critical shear rateġc( h̄ ) for l56.

FIG. 8. Critical shear rateġc(l) for h̄50.1.
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flow, once again the phase relations between interfaces
be constantly changing. Asl increases, the atoms must di
fuse farther across a layer for the pattern to coarsen, but
must be able to do so before they are swept downstream
the shear flow to a newx position where the diffusion is no
longer favored. We might anticipate then that in a gene
two-dimensional system with many lamellar domains,
any given shear rateġ there is an upper limitlc to the layer
spacing for which the coarsening instability is still prese
The shear flow destroys the correlations between interfa
necessary for the coarsening instability to operate, leadin
a dynamic steady state. The strength of the shear flow wo
determine the typical lamellar widthlc(ġ) present in the
system at steady state.

This behavior is qualitatively similar to that seen in t
fully three- dimensional ‘‘string’’ phase in shear flow. We d
not expect quantitative agreement, however, because the
bility analysis of the lamellar domain considered here
strongly dependent on the dimensionality. The instability
a long cylinder is much stronger than the weak exponen
two-dimensional instability found here. For the case o
viscous cylinder of fluid immersed in another viscous liqu
the hydrodynamic instability corresponding to a varico
perturbation has a dispersion relation that behaves as@16#

v;2
s

2ha
f ~ka!
ys
ill

ey
by

l
r

.
es
to
ld

ta-
s
f
al
a
,
e

wherea is the radius of the cylinder. Thus we might expe
more dramatic effects in this case.

In summary, we have shown that a long extended dom
in the two-phase state of a two-dimensional, pha
separating binary fluid can be stabilized by an applied sh
flow. There is a critical shear rate below which the extend
domain is unstable towards long-wavelength fluctuations
above which we predict complete stabilization. This is
qualitative agreement with experiments on dynamic ste
states in phase-separating fluids under shear flow; howe
the mechanisms operative here are different due to the
duced dimensionality. We intend to report results of a sim
calculation for a long cylindrical domain under flow in th
future.
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